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Data

Time series of 7 major zooplankton taxa, covering at

Background

In recent decades the Baltic Sea underwent

drastic climate- and fisheries-related changes in 62° max. the period from 1960 to 2008, were used to
pelagic ecosystem structure and functioning. investigate spring (May) interannual and spatial varia-
Specifically an ecosystem regime shift affecting all A\ e bility. Data sets were derived by LATFRAZ? and IOW5.
trophic levels was observed during a period from 50 W Data treatment:
Fhe end o_f th_e 1980s to early 1990s. Zooplankto_n ATl 1. Species abundances (N/m3) were averaged
s the ma]or_llnk between upper and IOINer trophic Z between samples per SD and year, and based on
Ievels_. Their comp(_)nentg, USUEIIIY dlsplay fast § 58° this a multi-annual overall mean was calculated.
reaction on changes in their physical environment, | = 5> For SD 25 a single time series was aenerated usin
being thus a reliable indicator of climate effectson | ® ' both data from SII_ATFRA and TOW: f%r ears wherg
marine ecosystems. Here, we present first results . | = hoth d | g . h. g y I,
of a re-analysis of zooplankton long-term | o ) o oth datasets overlapped, weighted annual means
dynamics in different areas of the Baltic Sea (ICES = 'F&S‘”‘/ Deep 80 WETe Icalculatelsl grom IO%IO(X; lt) trans_formegll
subdivisions SD 25. 26. 28 29) We extracted (WI% v E I_200 annual mean abundances O e€acC IMe series an
temporal trends ,an d, i d,e ntifié d  regime-like 54°) %fr/ Poland 400 back-transformed to original abundances.
changes. Synchronicity or differences in the 12° 14° 16° 18° 20° 22° o24° o2g° o8° | 3. 10 a@account for gear specific capture efficiencies and
Longitude [°E] different spatial and temporal resolutions,

observed zooplankton dynamics between areas
were investigated and potential driving forces
identified.

logl0(x+1) transformed anomalies were used in
the analysis (Mackas & Beaugrand, 2010)

Area-specific interannual dynamics
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Standardised Principal
Component Analysis
(PCA) of Chord Distance
transformed data per SD
(Legendre & Gallagher,
2001): Time-trajectories
of PC1 vs. PC2; colours
represent time periods
identified by Chrono-
logical Clustering on the
o-level 0.01 (Legendre
et al., 1985).

Small graphs illustrate
species loadings on the
first factorial plane.
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Relation to abiotic drivers

Generalised Additive Models (GAMs) (Hastie & Tibshirani, 1990) to analyse the importance of hydrographic and atmospheric parameters
on zooplankton species assemblages in spring: The table represent the most parsimonious models, relating the zooplankton state index
(PC1 of the respective PCA) to environmental variables (spring temperature & salinity, North Atlantic Oscillation (NAO), Atlantic
Multidecadal Oscillation (AMO)). Model selections are based on GCV and adjusted r%

Key findings

Hydrographic conditions varied similarly over time, especially in
SD 26, 28 and 29, with biggest year-to-year variations in the mid-
to late 1980s. Accordingly, zooplankton communities showed
significant shifts in 1988-1989 (SD25 and 28) and in 1985-1986
(SD26). Because the time series in SD29 ended in 1991, no
significant change point could be identified.

Time-trajectories showed that year-to-year variability in all
zooplankton time series is high, especially in the latter period
since 1990. Significant correlations were observed between area-
specific zooplankton dynamics, with strongest relationships
between neighbouring areas. Preliminary GAM analyses revealed
upper water temperature (0-20m) to be the main driver for
differences in the zooplankton community in all areas. Salinity was
only significant in SD 26, whereas in all areas the atmospheric
parameters AMO or NAO played a role.

SD | Predictors GCV | r2(%)

25 | Temperature***, AMO* 1.1654 | 78.6 p-level for variables:
26 | Temperature*** Salinity*, NAO** | 0.8911 | 90.5 1000 = 001
28 | Temperature*** AMO*** 1.4111 | 73.5

Correlation between areas

Results of a Mantel test based on Spearman correlation coefficient to analyse
the temporal agreement between area-specific zooplankton Chord-Distance
Matrices:

Size of the circles represent the Spearman rank correlation coefficient (all
significant). Highest correlation is observed between SD 26 and SD28 with
rs=0.728
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